
Using NetLogger for Distributed Systems Performance Analysis of the BaBar

Data Analysis System

 Brian Tierney1, Jacek Becla2, Dan Gunter1, Bob Jacobsen1, David Quarrie1

 1Lawrence Berkeley National Laboratory
2Stanford Linear Accelerator Center

Abstract

Developers and users of high-performance distributed systems often observe performance problems,
the reasons for which are rarely obvious. Bottlenecks can occur in any of the components along the
paths through which the data flows: the applications, the operating systems, the hosts, or the network.
We have developed a methodology, known as NetLogger, for detailed, end-to-end, top-to-bottom mon-
itoring and analysis of all system components. NetLogger is being added to the data analysis systems
that are used at the Stanford Linear Accelerator Center (SLAC) for the BaBar Project, and some initial
results are presented in this paper.

Keywords: performance analysis, NetLogger, BaBar

1.0 Introduction

Developers and users of high-performance distributed systems often observe performance problems such as
unexpectedly low throughput or high latency. The reasons for the poor performance can be manifold and are
frequently not obvious. It is often difficult to track down performance problems because of the complex inter-
action between the many distributed system components, and the fact that performance problems in one place
may be most apparent somewhere else. Bottlenecks can occur in any of the components along the paths
through which the data flow: the applications, the operating systems, the device drivers, the network adapters
on any of the sending or receiving hosts, and/or in network components such as switches and routers. Some-
times bottlenecks involve interactions among several components or the interplay of protocol parameters at
different points in the system, and sometimes they are due to unrelated network activity impacting the opera-
tion of the distributed system.

It has been our experience that wide-area distributed system developers and users often assume performance
problems are due to network congestion. However in our experience, this is often not true. Having analyzed
many distributed applications over the past 10 years, we have observed that performance problems are due
more often to application design problems, followed by network problems or host problems. Application
problems include inefficient use of remote services and communication mechanisms, such as a lack of TCP
tuning [7]. Therefore it is equally important to instrument and monitor the applications, not just the hosts and
networks.

To characterize the performance of distributed applications, we have developed a methodology for detailed,
end-to-end, top-to-bottom monitoring and analysis of significant events. This allows coordinated monitoring
of applications, networks, and hosts.

2.0 NetLogger

We have developed a methodology, known as NetLogger, for monitoring, under actual operating conditions,
the behavior of all the elements of the application-to-application communication path in order to determine
exactly what is happening within a complex system [6]. Distributed application components are instrumented
to perform precision timestamping and event logging at every critical point (e.g., all I/O and any significant
computational routine). The events are correlated with host and network monitoring to characterize the perfor-
mance of all aspects of the system in detail. NetLogger is designed to facilitate identification of bottlenecks
and help with performance tuning.

The NetLogger Toolkit is a set of tools which make it easy for distributed applications to log interesting
events at every critical point. NetLogger also includes tools for host and network monitoring. The approach is
novel in that it combines network, host, and application-level monitoring to provide a complete view of the
entire system.

NetLogger Toolkit contains the four components: the NetLogger message format, the NetLogger client
library, NetLogger visualization tools, and NetLogger host and network monitoring tools.

In addition to these NetLogger components, an additional critical component is a mechanism for synchroniz-
ing the clocks of all hosts in the distributed system. NTP (Network Time Protocol) [4] or a GPS host clock is
required for this.

The NetLogger message format is a simple ASCII format, which is an IETF draft standard format called ULM
(Universal Logger Message) [1]. The NetLogger Toolkit includes application libraries (in C, C++, Java, Perl,
Python, and Fortran) for generating NetLogger messages. Using these libraries one can send log messages to a
local file, a remote host, the syslog daemon, or local memory. NetLogger also includes wrappers for several
system monitoring utilities, such as vmstat, iostat, and netstat.

Event Log Analysis and Visualization Tools

Exploratory, interactive analysis of the log data—especially analysis of the graphical representations of indi-
vidual, exceptional events—has proven to be the most important means of identifying the causes of specific
behaviors. In particular, the ability to distinguish, manipulate, and analyze log event plots is critical to isolat-
ing the locations of (and thereby the reasons for) unexpected behavior.

NetLogger builds lifelines by combining specified events from a given set of processes, and represents them
as lines on a graph. The graph plots time (i.e., the timestamp from the event log) against a set of events. For
example, in a client-server distributed system, each request-response transaction might be represented as a
lifeline; the events on the lifeline might include the request’s dispatch from the client, its arrival at the server,
the commencement of server processing of the request, the dispatch of the response from the server to the cli-
ent, and the arrival of the response at the client.

We have developed a tool called nlv (NetLogger Visu-
alization) for interactively viewing the NetLogger
event files. nlv can display several types of NetLogger
events. The user can combine multiple different
sequences of events, servers, and graph types (lifeline,
load-line, or point) on a single graph; the display can be
modified to show an arbitrary subset of these elements.
nlv graphing primitives are shown in Figure 1. The
point type is used to graph events such as TCP retrans-
mits that happen at a certain point in time. The
load-line type is used to graph events such as CPU load
that vary over time. The lifeline type is used to follow processing flow through time, as described above. nlv
provides the ability to play, pause, rewind, slow down, zoom in/out, and so on. Figure 2 shows a sample nlv
session. nlv can be run post-mortem on a log file collected after the application is finished, or can be run in
“real-time,” analyzing live applications.

3.0 BaBar Data Analysis

The BaBar detector was built at SLAC to study the millions of B mesons produced by the PEP-II storage ring.
The BaBar collaboration consists of around 600 physicists and engineers from 85 institutions in 9 countries.
The computing environment for the BaBar data analysis is very complex, and consists of many (i.e., 100-300)
compute nodes, all sending results to a single database [2]. In the early production system, the time to place
selected events into the Objectivity [5] database was very inconsistent, varying from 2 to 300 seconds. There
was a very large amount of monitoring built into the BaBar software, yet it was quite difficult to correlate all

event E

event D

event C

event B

event A
time

point

load-line

lifeline

event

event

Figure 1: nlv graphing primitives

the log data to provide any insight into exactly why some nodes occasionally took several hundred seconds to
update the database.

We are planning to fully instrument the BaBar system with NetLogger instrumentation, but as a first step we
used the existing log files and converted them to the NetLogger/ULM format used by the NetLogger explor-
atory log file analysis tools. This proved to be very useful, as it was much easier to correlate logged events
using NetLogger.

4.0 Results

Figure 2 shows the NetLogger nlv tool for some of the BaBar data. nlv proved to be a very effective tool for
interactively exploring the log files. Some of the most useful features of nlv include the ability to color events
based on which compute node it was from, and the ability to color groups of nodes together (i.e., color nodes
140-149 the same color). nlv allows the user to click on a graph element to get more information from the log-
file about that event, such as the node number or an Objectivity error (see Figure2). nlv also allows the user to
turn on/off sets of events, so it is easy to look at results of just one node, or the results of several overlaid
nodes. nlv uses the gnuplot [3] library for generating output, so event plots can easily be saved in a large num-
ber of formats, including Postscript, GIF, JPEG, and MIF. The MIF output was used for Figure 3.

Figure 3 shows the results for a single compute node. This plot shows four NetLogger “event sets”: open con-
tainer, transaction commit, and OprBdbEventOutput (send event to Objectivity), represented as lifelines, and
reacquire lock, represented by a point. Using this plot it is very easy to understand why some of the OprBd-
bEventOutput events took longer than others. The OprBdbEventOutput events near the beginning took longer
because a new containers needed to be opened, and there was a pause in performing OprBdbEventOutput
events while a transaction was committed.

Figure 2 shows a plot with several Objectivity errors. The Objectivity error from the log file is displayed by
clicking on the error event in the graph. Note the location of points A, B, and C in Figure2. At the same time

A

B

C

Figure 2: nlv screen dump showing Objectivity errors: nodes 50 and 125

♦ zoom interface

♦ play/pause/step/rewind/etc.

♦ data density plot

♦ zoom placement window

that these two nodes took over 100 seconds to send an event to the database, most other nodes (not shown)
were able to send events in 2-3 seconds. It is expected that sometimes it will take longer to place new events
into the database (C) because new containers must be created (B), and it also expected that sometimes takes
longer to create a new container because a new database must be created (A). What was quite surprising in this
picture was that there was a 100 second pause between A and B, and a 30 second pause between B and C. This
was due to a deadlock problem that has since been fixed. This figure also shows the ability to click on a object
and get the node number, and shows a number of the nlv user interface features.

5.0 Conclusions and Future Work

Our initial work with NetLogger has been very promising, and nlv provides a very useful way to view the cor-
relation of logged events. The next step to is add host monitoring, such as CPU and memory usage, and then
add NetLogger messages directly into the BaBar software. NetLogger is available for download from
http://www-didc.lbl.gov/NetLogger/.

6.0 Acknowledgments

The work described in this paper is supported by the U. S. Dept. of Energy, Office of Science, Office of Com-
putational and Technology Research, Mathematical, Information, and Computational Sciences Division
(http://www.er.doe.gov/production/octr/mics/index.html), under contract DE-AC03-76SF00098 with the Uni-
versity of California. This is report no. LBNL-44828.

7.0 References
[1] Abela, J., T. Debeaupuis, “Universal Format for Logger Messages”, IETF Internet Draft,

http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

[2] BaBar Experiment: http://www.slac.stanford.edu/BFROOT/

[3] gnuplot: http://www.cs.dartmouth.edu/gnuplot_info.html

[4] Mills, D., “Simple Network Time Protocol (SNTP)”, RFC 1769, University of Delaware, March 1995.
http://www.eecis.udel.edu/~ntp/.

[5] Objectivity: http://www.objectivity.com/

[6] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J., Drake, F., “A Network-Aware Distributed Storage
Cache for Data Intensive Environments”, Proceeding of IEEE High Performance Distributed Computing confer-
ence (HPDC-8), August 1999, LBNL-42896.

[7] Tierney, B. “TCP Tuning Guide for Distributed Application on Wide Area Networks”,
http://www-didc.lbl.gov/tcp-wan.html

OpenContainer_Start

OpenContainer_End

TransCommit_Start

TransCommit_End

EventOutput_Start

EventOutput_End

Reacquire_Lock

250 300 350 400 450

SLAC f-bronco 35-1

Event Output paused

while new container is
created

convertToPersistent

Time (Seconds)

Figure 3: Normal operation showing correlation of events: node 140

Event Output takes longer than usual

due to need to create new container

